

Developing Digital Measures of Function using Wearable Sensors for Alzheimer's Disease

Jen Blankenship, PhDt styles Senior Research Scientist November 28, 2023

About VivoSense

VivoSense develops and validates digital clinical measures and provides end-toend services and solutions for their delivery in regulated clinical trials.

Functional Independence Matters to Patients Alzheimer's Disease

AD is associated with cognitive and physical changes that affect day-to-day functioning and disability.

Dubbelman et al., 2020, *Alzheimers Res Ther* Bruderer-Hofstetter et al., 2022, *BMC Geriatr*

Patients with AD and their caregivers consistently report the importance of **maintaining the ability to function independently**.

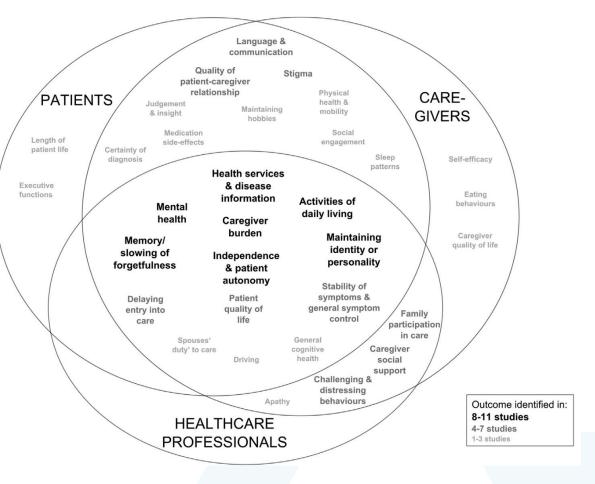


Figure from Tochel et al., 2019, Alzheimers Dement Diagn Assess Dis Monit

© 2022 VivoSense, All Rights Reserved

3

Established Approach to Measuring Function in Alzheimer's Disease

The NEW ENGLAND JOURNAL of MEDICINE

RESEARCH SUMMARY

Lecanemab in Early Alzheimer's Disease

van Dyck CH et al. DOI: 10.1056/NEJMoa2212948

CLINICAL PROBLEM

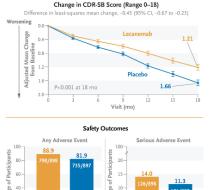
Some evidence suggests that amyloid removal slows the progression of Alzheimer's disease. Lecanemab, an anti-amyloid monoclonal antibody with high affinity for soluble amyloid protofibrils, is being tested in early Alzheimer's disease.

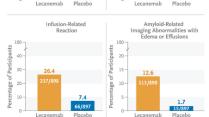
CLINICAL TRIAL

Design: A phase 3, multicenter, double-blind, randomized, placebo-controlled trial assessed the efficacy and safety of lecanemab in patients 50 to 90 years of age with early Alzheimer's disease.

Intervention: 1795 participants in North America, Europe, and Asia were assigned to receive intravenous lecamenab (10 mg per kilogram of body weight every 2 weeks) or placebo. The primary efficacy end point was the change in the score on the Clinical Dementia Rating–Sum of Boxes (CDR-SB) from baseline, with higher scores indicating greater impairment.

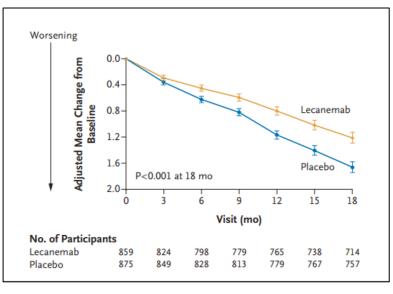
RESULTS

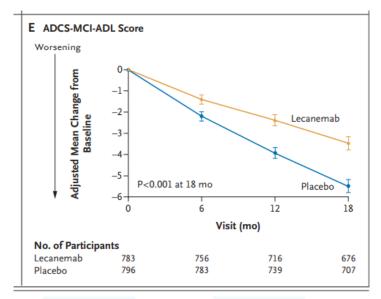

Efficacy: At 18 months, mean CDR-SB scores had worsened in both groups. The mean change in CDR-SB score was smaller (indicating less cognitive and functional decline) in the lecanemab group.


Safety: Overall incidences of adverse events were similar in the two groups. The most common adverse events in the lecanemab group included infusion-related reactions and amyloid-related imaging abnormalities with edema or effusions.

LIMITATIONS AND REMAINING QUESTIONS

- Longer-term follow-up is needed; an open-label extension study is ongoing.
- The trial was conducted during the Covid-19 pandemic and, as a result, faced challenges including missing data, missed doses, delayed assessments, and intercurrent illnesses.
- Occurrences of amyloid-related imaging abnormalities may have led to unblinding of participants and investigators.


Links: Full Article | NEJM Quick Take | Editorial



was associated with moderately less decline on measures of cognition and function than placebo over a period of

Primary endpoint: CDR Sum of Boxes

ADCS-MCI-ADL Score

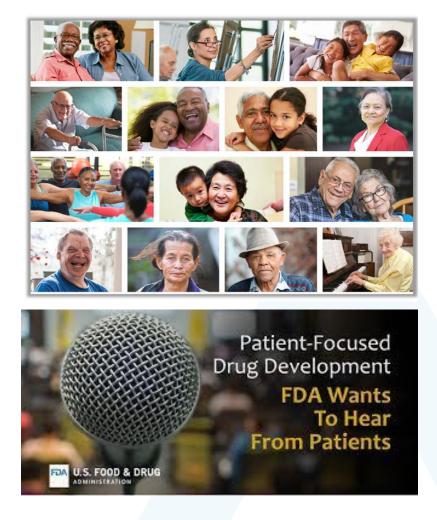
Figures from van Dyck et al., 2023, NEJM

© 2022 VivoSense. All Rights Reserved 4

Limitations of Existing Methods of Function

- Episodic
- Subjective to recall and rater bias
- Burdensome and dependent on informant reports
- Do not reflect patients' lived experience
 - Assessed in clinic settings
 - Do not capture everyday functional challenges

Over the last 4 weeks, has Bob been able to dress himself independently?



Importance of Patients' Lived Experiences

FDA has shifted drug development approaches towards the patient

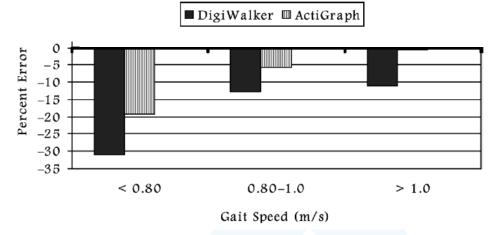
Patient Focused Drug Development (PFDD)

Develop drugs that improve aspects of life that matter to patients

There is an **unmet need** to develop new methods to **capture aspects** of functioning that matter to patients with Alzheimer's disease.

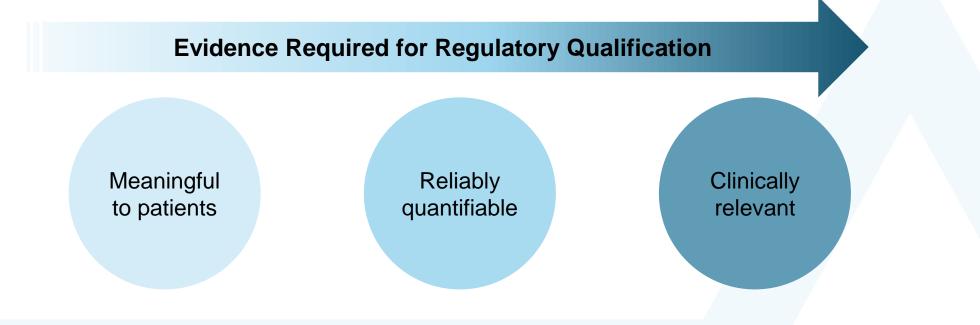
Opportunities for Wearable Actigraphy Sensors in AD

- Can capture many measures of physical behavior carried out in daily life, including walking
- Enable low-burden, continuous, and passive assessments of function in home environments
- Complement subjective ratings of function
- Detect treatment effects more efficiently with ecologically relevant endpoints



Assessing Walking Behaviors in AD with Actigraphy Sensors

- Walking behaviors are central to functional independence.
- Most algorithms to derive walking behavior have been developed in healthy populations.
- Existing algorithms underestimate steps in individuals with slower gait, such as those with Alzheimer's disease



Adapted from Storti et al., MMSE, 2008

Long-Term Research Goals of VivoSense Science R&D

- Obtain regulatory qualification of a real-world digital measure of function in Alzheimer's disease
- Well-defined and reliable assessment
- Accepted by FDA for regulatory decision making

MassAITC Pilot Study Specific Aims

Aim 1

Develop and validate novel methods to detect walking behaviors from inertial sensors

Aim 2

Validate clinical meaningfulness of digital biomarkers in real-world environments

Aim 3

Evaluate the feasibility and acceptability of wearable sensors in real-world environment

The Team: Multi-disciplinary Academic-Industry Partnership

VivoSense

UMass Amherst

Michael Busa, PhD

Corinna Serviente, PhD

Participants

Twenty older adults with (n=10) and without (n=10) Alzheimer's disease

Inclusion/Exclusion Criteria (all participants)

- ≥ 65 years
- Free from other types of dementia, traumatic brain injury or cerebral vascular stroke

Inclusion/Exclusion Criteria (patients with Alzheimer's disease)

• Self-reported diagnosis of mild Alzheimer's disease

Study Design: Aim 1

MOTION CAPTURE LABORATORY

- Multiple assessments of walking behaviors captured while wearing inertial sensors (ActiGraph GT9x and CPIW, activPAL
- Truth data captured using 9-camera motion capture system

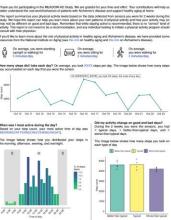
ALGORITHM DEVELOPMENT

• Develop machine learning algorithms to derive measures of realworld walking behavior in Alzheimer's disease

Study Design: Aim 2 and 3

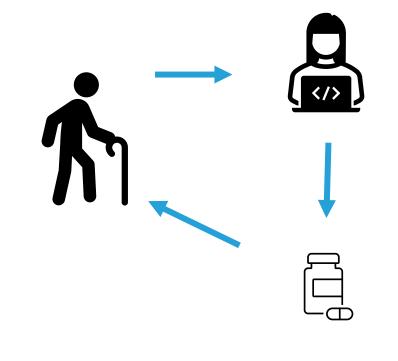
REAL-WORLD MONITORING

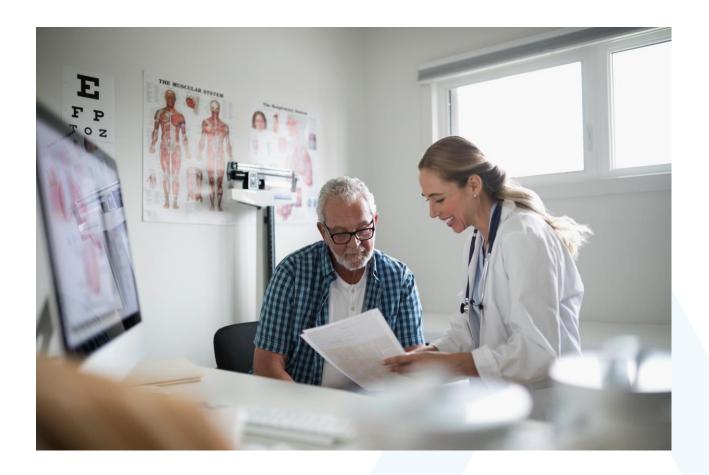
At-home


- Participants will wear monitors on wrist and thigh for 2 weeks to assess how patients function at home
- Evaluate group differences in real-world walking behaviors

After wearing monitors

- Participants complete wearable sensors feasibility and acceptability questionnaire
- Wearable sensor data summary report generated and provided to participants
- Questionnaire deployed to evaluate meaningfulness of data




Participant Physical Activity Report

The vision: remote monitoring of function enables novel and effective methods for Alzheimer's care and treatment

Jen.Blankenship@vivosense.com

